Encapsulation of Protocorm of *Cymbidium bicolor* Lindl. for Short-Term Storage and Germplasm Exchange

Ganesan Mahendran  
Research scholar, Department of Botany, Bharathiar University, Coimbatore- 641046, India.

Received: 11 June 2014  
Accepted: 23 December 2014  
*Corresponding author’s email: mahendran0007@gmail.com*

The present study describes the encapsulation of protocorm of *Cymbidium bicolor* Lindl. from 60 days-old in seed cultures for short-term conservation and propagation. Various concentrations and combinations of gelling matrix (sodium alginate) and complexing agents (calcium chloride) were tested to prepare uniform beads. The ideal beads were obtained through a combination of 3% sodium alginate and 100 mM calcium chloride. Encapsulated protocorms exhibited the best re-growth and conversion frequency on MS medium supplemented with BA (4.42 μM). Encapsulated protocorms stored at 25°C were green and retained the viability with potential for conversion (52%) and germination even after 360 days. The encapsulated protocorms stored at 4°C remained viable up to 30 days beyond which the conversion rate decreased drastically. Well-developed plantlets were transplanted into plastic pots containing vermiculite and maintained for 60 days in the culture room for acclimatization. The 90% of the recovered plantlets were hardened off and established successfully in the soil. The present study could be useful for large scale propagation as well as short term storage of this commercial orchid.

**Keywords:** Acclimatization, Encapsulation, Epiphytic orchid, Germplasm preservation, Protocorms, Sodium alginate, Synthetic seeds.

**Abbreviations:** ANOVA (Analysis of variance), SPSS (Statistical package for the social sciences), CaCl₂·2H₂O (Calcium chloride), DDW (Double distilled water), TDZ (Thidiazuron), BA (6-Benzyl adenine), Z (Zeatin), Kn (6-Furfurylaminopurine).
INTRODUCTION

The encapsulation technique is an important application of micropropagation that offers the potential of easy handling, exchange of germplasm between laboratories, efficient short- or long-term storage and improves delivery of in vitro regenerated plantlets to the field or to the greenhouse (Piccioni and Standardi, 1995; Chand and Singh, 2004; Rai et al., 2009). Synseed technology provides a means for the transportation of propagules to distant places as well as to different laboratories without a loss in vigor for shoot organogenesis in micropropagation programs (Rihan et al., 2011; Hung and Trueman, 2012a,b; Lata et al., 2012; Reddy et al., 2012). Therefore, appropriate storage conditions and a definite storage period are prerequisites to maintain synseed viability during transportation that leads to successful commercialization of synseed technology (Sharma and Shahzad, 2012; Sharma et al., 2013).

Synseed are prepared using unipolar structures such as hairy roots (Uozumi et al., 1992; Nakashimada et al., 1995), apical shoot tips (Rai et al., 2008; Singh et al., 2009), axillary buds (Ahmad and Anis, 2010; Singh et al., 2010) and protocorm-like bodies of orchids (Sarmah et al., 2010). Orchids are a group of economically important plants valued for cut flowers. Synthetic seed technology has been employed for the mass multiplication and for the storage of number of the orchids (Saiprasad and Polisetty, 2003; Nhut et al., 2005; Sarmah et al., 2010). The exploitation of the encapsulation technology has proven to be successful specifically for a number of Orchidaceae species, such as Dendrobium wardianum (Sharma et al., 1992), Cymbidium gianteum (Corrie and Tandon, 1993), Geodorum densiflorum (Datta et al., 1999), Spathoglottis plicata (Khor et al., 1998), Dendrobium densiflorum (Vij et al., 2001), Dendrobium, Oncidium, and Cattleya (Saiprasad and Polisetty, 2003), Ipsea malabarica (Martin, 2003), Vanilla planifolia (Divakaran et al., 2006), Vanda coerulea (Sarmah et al., 2010), Coelogyn brevica (Mohanraj et al., 2009), Aranda × Vanda (Gantait et al., 2012), Cymbidium devonianum (Das et al., 2011), Flickingeria nodosa (Nagananda et al., 2011), Dendrobium candidum (Zhang and Yan, 2011), Phalaenopsis bellina (Khoddamzadeh et al., 2011), Dendrobium nobile (Mohanty et al., 2012) and Dendrobium Shavin White (Bustam et al., 2013).

Cymbidium or “boat orchid” is a popular orchid grown commercially worldwide (Chugh et al., 2009). Today, orchids such as Cymbidium, Dendrobium, Oncidium and Phalaenopsis are marketed globally and the orchid industry contributes substantially to the economy of many the South East Asian countries. Cymbidium bicolor Lindl. is an important horticultural orchid known for its beautiful flowers (Chugh et al., 2009). In Cymbidium, plantlets were regenerated in in vitro using shoot tips (Morel, 1964), mature and immature seeds (Chung et al., 1985; Shimasaki and Uemoto, 1990), green capsules (Hossain et al., 2010; Deb and Pongener, 2011), flower stalks (Wang, 1988), pseudo bulbs (Shimasaki and Uemoto, 1990), shoot segments (Nayak et al., 1997), flower buds (Shimasaki and Uemoto, 1990), protocorm-like bodies (PLBs) (Begum et al., 1994; Huan and Tanaka, 2004; Teixeira da Silva et al., 2007), thin cell layers of PLBs (Malabadi et al., 2008), artificial seeds (Nhut et al., 2005) and through somatic embryogenesis (Chang and Chang, 1998; Huan and Tanaka, 2004; Mahendran and Narmatha Bai, 2012). Hoque et al. (1994) reported that Phytomax medium was the best among the five different media (Phytomax, Modified Vacin and Went, KC, KCM and LO medium) tested for large scale multiplication of C. bicolor. The present study was carried out with the aim to optimize the methods for the production of synseeds using seed derived protocorm for propagation and in vitro short-term storage. Broadly, three experiments were conducted (i) to assess the effect of encapsulation matrix on the formation of synthetic seeds (ii) to test the efficiency of growth regulators for in vitro conversion of synthetic seeds under aseptic conditions and (iii) to study the effect of storage (4°C and 25°C) temperature on the conversion of encapsulated protocorms.

MATERIALS AND METHODS

Explant source

Green pods of Cymbidium bicolor collected from National Yercaud Orchidarium Salem, India, were surface sterilized through the procedure adopted by Mahendran et al. (2013) and used
to raise aseptic protocorms in seed germination medium that comprised Lindemann orchid (LO) (Lindemann et al., 1970) under controlled conditions of light, temperature and humidity (Mahendran et al., 2013). The protocorms were taken from in vitro seed cultures of *C. bicolor* and used as the source of explants for the preparation of synseeds.

**Encapsulation matrix and complexing agent**

Sodium alginate (Qualigens, India) was used as gelling agent and prepared in double distilled water (DDW) and liquid B5 medium (with 3% sucrose) at different concentrations, i.e., 1, 2, 3, 4 and 5% (w/v). For complexion, 25, 50, 75, 100 and 200 mM calcium chloride (CaCl$_2$.2H$_2$O) solution was prepared in liquid B5 medium. The pH of the gel matrix and the complexing agent was adjusted to 5.8 prior to autoclaving at 121°C for 20 min.

**Encapsulation of explants**

Encapsulation was accomplished by mixing the 60-day-old protocorms with sodium alginate solution and dropping them in CaCl$_2$.2H$_2$O solution using a pipette. The droplets containing the explants were held at least for 25–30 min to achieve polymerization. The alginate beads containing the protocorms were retrieved from the solution and rinsed twice with sterilized DDW to remove the traces of CaCl$_2$.2H$_2$O and transferred to sterile filter paper in Petri dishes for 5 min under the laminar airflow cabinet to eliminate the excess of water and thereafter transferred to culture vials containing nutrient medium.

**Planting media and culture conditions**

The encapsulated protocorms (alginate beads) were transferred to test tube (Borosil, India) containing B5 basal medium without plant growth regulator (PGR) and B5 medium supplemented with cytokinins like BA (1.10, 2.21, 4.42, 8.84 or 13.26 µM), Kn (1.16, 2.32, 4.64, 9.28 or 13.92 µM), TDZ (1.13, 2.26, 4.52, 9.24 or 13.76 µM) or Zt (1.12, 2.24, 3.36, 4.58 or 6.90 µM), individually. The culture medium was gelled with 0.8 % (w/v) agar and pH was adjusted to 5.8 prior to autoclaving at 121°C for 20 min. Cultures were maintained at 25 ± 2°C under 16/8 h light–dark conditions with a photosynthetic photon flux density (PPFD) of 50 μmol m$^{-2}$ s$^{-1}$ provided by cool white fluorescent tubes (40 W, Philips, India).

**Short-term storage of encapsulated protocorm**

Two sets of 150 encapsulated protocorms were kept in two sterile wide mouth culture flask (Borosil, India) properly covered with aluminium foil and stored in refrigerator at 4°C and culture room at 25 ± 2°C. Six different exposure times (0, 30, 60, 90, 180 and 360 days) were evaluated for conversion of synseeds into plantlets. After each storage period, 15 encapsulated were transferred to B5 medium containing optimal concentration of PGRs for conversion into plantlets. During storage period the beads were sprayed with sterile DDW after every storage period to ensure the moist conditions so that the beads may not shrink by losing water. The number of shoot regeneration, root, shoot and root length of encapsulated protocorm was recorded after 8 weeks of culture.

**Hardening and acclimatization**

Plantlets with well-developed root and shoot system were removed from the culture medium and washed gently under running tap water to remove any adherent gel from the roots and transferred to plastic cups containing sterile vermiculite. These were kept under similar culture conditions as mentioned earlier and covered with transparent polythene bags to ensure high humidity. These were irrigated after every 10 days with one-fourth strength B5 salt solution (without vitamins) for 2 month. Polythene bags were removed gradually after 1 month in order to acclimatize the plantlets and after 8 weeks they were transferred transplanted into plastic pot (10 x 8 cm; height x diameter) containing sterilized vermiculite (50 g per pot) and maintained in greenhouse under normal day light conditions.
Statistical analysis

The results were expressed as mean ± SE of three independent replicates of independent experiments. Data were subjected to analysis of variance (one way ANOVA) and Duncan’s Multiple Range Test (DMRT) using SPSS version 17.0.

RESULTS AND DISCUSSION

The formation of beads and the subsequent success of the encapsulation depend on the concentration of alginate and calcium chloride used and it may vary with different propagules as well as with the different plant species (Sharma and Shahzad, 2012). Hence, the concentrations of these two solutions and complexion time must be optimized for the formation of an ideal bead. In most of the reports, 3% (w/v) sodium alginate and 100 mM calcium chloride for 20–30 min has proved to be the best combination for the formation of an ideal synseed (Tabassum et al., 2010; Ahmad and Anis, 2010; Ozudogru et al., 2011; Alatar and Faisal, 2012; Hung and Trueman, 2011, 2012a, b; Gantait et al., 2012). However, 3% sodium alginate upon complexion with 75 mM calcium chloride for 20–30 min was found to be optimum combination for proper hardening of beads orchids such as of Dendrobium, Oncidium and Cattleya orchids (Saiprasad and Polisetty, 2003). In contrast, for the encapsulation of nodal segments of medicinal plant such as Pogostemon cablin (Swamy et al., 2009), Spilanthes acmella (Sharma et al., 2009b) and the microshoots of Zingiber officinale (Sundararaj et al., 2010), 4% sodium alginate with 100 mM calcium chloride was optimum. This variation in sodium alginate concentration for synseed formation in different plant species might be due to the variation of the source from which the chemicals were purchased as suggested by Ghosh and Sen (1994) and Mandal et al. (2000). In the present study, alginate-beads containing seed derived protocorm (beads) showed different morphology (clearness, form, and consistency) based on the concentrations of sodium alginate and calcium chloride used. Ideal beads were obtained with 3% sodium alginate in 100 mM CaCl₂ solution (Fig. 1c). At lower concentrations (1–2%), sodium alginate became unsuitable for encapsulation because of a reduction in its gelling ability following exposure to high temperature during autoclaving (Larkin et al., 1998). On the contrary, high concentrations of sodium alginate (5–6%), beads were diametric but too hard, causing considerable delay in sprouting of shoots (Ahmad and Anis, 2010; Sharma et al., 2009 a,b; Gantait and Sinniah, 2012) which was also observed in our study (Fig.1a-d).

The most desirable property of the encapsulated explants is their ability to retain viability in terms of regrowth and conversion abilities after encapsulation (Adriani et al., 2000; Micheli et al., 2007). In the present study, the ideal beads produced by encapsulating protocorm in 3% sodium alginate and 100 mM CaCl₂·2H₂O were cultured on B5 basal medium without any PGR as well as with various concentrations of BA, Kn, Zt and TDZ (Fig.1e). Synseeds cultured on B5 basal medium exhibited 90% regeneration response and this occurred after 10 weeks of culture. Addition of higher concentration of cytokinins enhanced the regeneration potential of the beads and the shoots emerged out within 10-15 days of inoculation onto the regeneration medium. An average of 30.25±0.11 shoots/bead was produced in the medium containing 4.42 µM of BA with 87% regeneration response after 10 weeks of culture (Table 1; Fig. 1f). The shoot buds first appeared as small white protuberances over the surface of the protocorm which eventually developed into multiple shoots within 45–60 days. The number of shoot buds increased with increasing concentration of BA up to an optimal level of 4.42 µM. Among the various concentrations of Kn and TDZ tested, maximum number of the multiple shoots were recorded in B5 medium supplemented with 13.92 µM Kn (23.89±0.54 shoots/encapsulated explant), 13.76 µM TDZ (6.41±0.50 shoots/bead) and 6.90 µM zeatin (14.56±0.23 shoots/bead). Emergence of single or multiple shoots from the encapsulated explants has also been reported earlier in other medicinal plants (Mandal et al., 2000; Lata et al., 2009; Shrivastava et al., 2009). Mishra et al. (2011) also described that encapsulated explants of Picrorhiza kurroa exhibited simultaneous production of shoots and roots while rest of
the non-rooted shoots were transferred to root induction medium for the development of roots. Supplementation of PGRs to the regeneration medium has been found to eliminate the requirement of an additional in vitro root induction step prior to acclimatization (Sharma and Shahzad, 2012). In the present study, encapsulated explants of C. bicolor exhibited simultaneous production of shoots and roots without any specific root induction medium (Fig. 1g). B5 medium supplemented with BA (4.43 µM) significantly increased the number of protocorms as well as induced roots (Table 1). Similar result observed in Cassava (Danso and Ford-Lloyd, 2003) and Zingiber officinale (Sundararaj et al., 2010). In contrast, Gangopadhyay et al. (2005) devised a two-step method to achieve maximum bead conversion in A. comosus (pineapple). In the first step, shoots were retrieved from encapsulated beads and in the second step, these microshoots were rooted in liquid medium (supplemented with 0.01 mM IBA and 0.002 mM Kn) supported with luffa-sponge.

Values represent mean±S.E. Each treatment was repeated twice and each treatment counted of 5 replicate culture tubes, each containing five encapsulated protocorms. Means in a column with the different letter (superscript) are significantly different according to DMRT (p < 0.05).

In C. bicolor the encapsulated protocorms stored at 25°C gave promising results for germination and regeneration. Table 2 presents the germination and conversion competency of synthetic seeds stored at 4°C and 25°C for 0, 30, 60, 90, 180 and 360 days. Regeneration percent of the encapsulated protocorms decreased gradually with an increase in storage duration at 25°C with being significantly more (p≤0.05) compared to that stored in 4°C. Encapsulated protocorms stored at 4°C up to 30 days retained their viability (10.23%) and with the advancement of storage duration (60 days) the synthetic seed turned necrotic, shrunk and brown, resulting in complete death, whereas, beads stored at 25°C were green, with potential for conversion and with 52% germination even at 360 days. Storage of encapsulated protocorm/PLBs is greatly influenced by the temperature. However, the response of synthetic seeds to storage temperature appears to be species specific (Bustam et al., 2012 and Gantait and Sinniah, 2012). The failure of prolonged storage in 4°C in the present study corresponds to the earlier reports where, in low temperature (4°C) storage, the storage life of synthetic seed was rather short (Redenbaugh et al., 1987; Gantait et al., 2012). Sim-

Table 1. Effect of different plant growth regulators on regeneration of encapsulated protocorm of C. bicolor.

<table>
<thead>
<tr>
<th>BA (µM/l)</th>
<th>Kn (µM/l)</th>
<th>TDZ (µM/l)</th>
<th>Zt (µM/l)</th>
<th>Regeneration response (%)</th>
<th>No. of shoots/bead</th>
<th>Shoot length (cm)/bead</th>
<th>No. of Roots</th>
<th>Root length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>90</td>
<td>2.43±0.12</td>
<td>3.21±0.23</td>
<td>1.87±0.89</td>
</tr>
<tr>
<td>1.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>92</td>
<td>10.23±0.34</td>
<td>2.11±0.14</td>
<td>2.12±0.43</td>
</tr>
<tr>
<td>2.21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>97</td>
<td>16.65±0.98</td>
<td>2.54±0.62</td>
<td>2.11±0.98</td>
</tr>
<tr>
<td>4.42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>87</td>
<td>30.25±0.11</td>
<td>2.58±0.74</td>
<td>1.11±0.43</td>
</tr>
<tr>
<td>8.84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>98</td>
<td>20.17±0.13</td>
<td>2.33±0.54</td>
<td>1.06±0.11</td>
</tr>
<tr>
<td>13.26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>79</td>
<td>17.12±0.34</td>
<td>3.32±0.12</td>
<td>0.80±0.21</td>
</tr>
<tr>
<td>-</td>
<td>1.16</td>
<td>-</td>
<td>-</td>
<td></td>
<td>89</td>
<td>3.56±0.78</td>
<td>2.32±0.65</td>
<td>2.61±0.12</td>
</tr>
<tr>
<td>-</td>
<td>2.32</td>
<td>-</td>
<td>-</td>
<td></td>
<td>90</td>
<td>7.87±0.91</td>
<td>2.12±0.76</td>
<td>3.19±0.34</td>
</tr>
<tr>
<td>-</td>
<td>4.64</td>
<td>-</td>
<td>-</td>
<td></td>
<td>76</td>
<td>12.43±0.19</td>
<td>3.98±0.17</td>
<td>1.43±0.19</td>
</tr>
<tr>
<td>-</td>
<td>9.28</td>
<td>-</td>
<td>-</td>
<td></td>
<td>98</td>
<td>17.81±0.71</td>
<td>3.30±0.22</td>
<td>1.67±0.20</td>
</tr>
<tr>
<td>-</td>
<td>13.92</td>
<td>-</td>
<td>-</td>
<td></td>
<td>100</td>
<td>23.89±0.54</td>
<td>2.23±0.21</td>
<td>1.21±0.21</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1.13</td>
<td>-</td>
<td></td>
<td>90</td>
<td>3.54±0.43</td>
<td>4.54±0.76</td>
<td>1.11±0.56</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>2.26</td>
<td>-</td>
<td></td>
<td>89</td>
<td>3.76±0.11</td>
<td>4.32±0.54</td>
<td>1.00±0.22</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>4.52</td>
<td>-</td>
<td></td>
<td>100</td>
<td>4.12±0.61</td>
<td>3.80±0.27</td>
<td>1.12±0.31</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>9.24</td>
<td>-</td>
<td></td>
<td>90</td>
<td>5.45±0.99</td>
<td>3.76±0.76</td>
<td>0.95±0.93</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>13.76</td>
<td>-</td>
<td></td>
<td>90</td>
<td>6.14±0.50</td>
<td>2.34±0.41</td>
<td>0.81±0.21</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>1.12</td>
<td>87</td>
<td></td>
<td>-</td>
<td>2.45±0.81</td>
<td>3.50±0.16</td>
<td>2.52±0.75</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>2.24</td>
<td>90</td>
<td></td>
<td>-</td>
<td>4.76±0.11</td>
<td>2.54±0.58</td>
<td>3.84±0.84</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>3.36</td>
<td>96</td>
<td></td>
<td>-</td>
<td>5.10±0.89</td>
<td>2.20±0.43</td>
<td>1.66±0.61</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>4.58</td>
<td>97</td>
<td></td>
<td>-</td>
<td>10.01±0.21</td>
<td>3.20±0.03</td>
<td>1.00±0.39</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>6.90</td>
<td>100</td>
<td></td>
<td>-</td>
<td>14.56±0.23</td>
<td>3.60±0.36</td>
<td>1.41±0.14</td>
</tr>
</tbody>
</table>

Values represent mean±S.E. Each treatment was repeated twice and each treatment counted of 5 replicate culture tubes, each containing five encapsulated protocorms. Means in a column with the different letter (superscript) are significantly different according to DMRT (p < 0.05).
Similarly, the germination of encapsulated PLBs of *Aranda x Vanda coerulea* also showed marked decline, following storage at low temperature (Gantait et al., 2012). Storage at room temperature (25°C) implemented in this study was effective for short-term storage and handling without refrigerated containers and beads stored up to 360 days gave considerable conversion rate (52%). Similarly, in *Aranda x Vanda coerulea* beads stored at 4°C showed rapid deterioration and faced complete death within 160 days while those stored for 200 days at 25°C showed relatively high conversion/ regeneration (71.6%) (Gantait and Sinniah, 2012). Encapsulated PLBs of *Dendrobium* were successfully stored up to 135 days with 52% survival at 25±2°C (Bustam et al., 2012). In *Vanda coerulea* encapsulated PLBs stored at 4°C retaining their viability up to 100 days (Sharmah et al., 2010) and in *Phalaenopsis bellina* beads stored at 25°C up to 60 days did not show any response (Khoddamzadeh et al., 2011). The decline in the viability and germination rate of stored encapsulated protocorms (4°C) may be related to oxygen deficiency in the gel bead as reported by earlier researchers (Danso and Ford-Lloyd, 2003; Gantait et al., 2012).

The regeneration efficiency and the number of seedling/shoots and shoots length declined with increase in storage duration at both 4°C and 25°C of plant markedly reduced with an increase in storage time. Till 30 days of storage at both 25°C and 4°C, number of shoots reduced from 30.25±0.11 to 19.12±0.71 while the shoot length reduced from 2.58±0.74 to 2.40±0.56. At 360 days of storage, capsules stored at 25°C showed 18.87±0.44 shoots/bead, whereas, capsules stored at 4°C lost their viability completely after 30 days. Similarly, in relation to morphological changes, the numbers of shoots, root numbers, shoot and rootlength of the stored synthetic seed on optimized conversion medium decreased in a linear manner with increase in storage duration till 360 days. Root numbers, on the other hand, was unaffected by the storage duration under refrigerated conditions (4°C), as each encapsulated protocorms produced one root after 30 days of storage time. While storage at 25°C had a different trend with an increase in storage time, a linear reduction in root number was observed (1.00 to 0.53) up to 180 days of storage (Table 2). According to Danso and Ford-Lloyd (2003) and Gantait et al. (2012) the decline in conversion or morphogenesis i.e. shoot forming capacity as the result of prolonged storage could be due to inhibited respiration of tissues.

The plantlets were transferred to the potting medium containing vermiculite and covered with polythene bag and maintained at 25±2°C. After 2 months, the cover was gradually loosened, thus dropping the humidity (65–70%) (Fig.1h and i) this procedure subsequently resulted in *in vitro* hardening of the plants. Acclimatization of plants grown in *in vitro* to *ex vitro* conditions is a critical step for many species, requiring time and expensive installation that restrict the commercial application of micropropagation process. About 90% survival rate in the present study was obtained when plantlets were transferred to field.

### Table 2. Effect of storage at 4°C and 25 ± 2°C for different time periods on conversion of encapsulated protocorm of *C. bicolor* on B5 medium containing BA (4.42 µM).

<table>
<thead>
<tr>
<th>Storage temperature (°C)</th>
<th>Storage duration (days)</th>
<th>Regeneration response (%)</th>
<th>No of shoots/bead</th>
<th>Shoot length (cm)/bead</th>
<th>No of Roots</th>
<th>Root Length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4°C</td>
<td>0</td>
<td>30.25±0.11 a</td>
<td>2.58±0.74 a</td>
<td>1.11±0.43 a</td>
<td>1.15±0.13 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>19.12±0.71 a</td>
<td>2.40±0.56 a</td>
<td>1.31±0.50 a</td>
<td>1.00±0.90 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>Complete death</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>30</td>
<td>30.12±0.45 a</td>
<td>2.29±0.97 a</td>
<td>1.00±0.11 a</td>
<td>1.00±0.11 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>27.65±0.98 b</td>
<td>1.95±0.62 b</td>
<td>0.95±0.98 b</td>
<td>0.95±0.98 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>25.83±0.71 c</td>
<td>1.14±0.74 b</td>
<td>0.94±0.43 b</td>
<td>0.94±0.43 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>20.59±0.60 d</td>
<td>0.83±0.54 d</td>
<td>0.53±0.81 b</td>
<td>0.53±0.81 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>18.87±0.44 e</td>
<td>0.32±0.12 e</td>
<td>0.45±0.77 c</td>
<td>0.45±0.77 c</td>
<td></td>
</tr>
</tbody>
</table>

Values represent mean±SE. Each treatment was repeated twice and each treatment counted of 5 replicate culture tubes, each containing five encapsulated protocorms. Means in a column with the different letter (superscript) are significantly different according to DMRT (p<0.05).
CONCLUSION

In conclusion, this study developed highly effective techniques for synthetic seed production, short-term conservation and regeneration of plantlets. The synthetic seed development protocol illustrated here offers a substitute scheme for mass propagation and germplasm distribution of this important orchid to laboratories and extension centers in distant places. Exultant plant recovery from encapsulated shoot tips following room temperature storage for more than 360 days indicates that the technique described in this report can be potentially exploited for short-term storage with the retention of genetic uniformity.

Fig. 1. Alginate-encapsulation, short-term storage and regeneration of C. bicolor using seed derived protocorm.

a. Beads prepared with 2% sodium alginate in 75 mM calcium chloride solution. (Bar = 2 cm)
b. Beads prepared with 3% alginate in 75mM calcium chloride solution. (Bar = 2 cm)
c. Firm beads at 3% sodium alginate in 100 mM CaCl₂ solution (Bar = 2 cm)
d. Hard brads 5% at sodium alginate in 100 mM CaCl₂ solution. (Bar = 2 cm)
e. Conversion of synthetic seed & formation of multiple shoot/seedling on B5 medium containing BA (4.42 μM). (Bar = 2 cm)
f. Conversion of synthetic seed & formation of multiple protocorm/seedling on B5 medium containing Kn (13.92 μM). (Bar = 2 cm)
g. Plantlets (Bar = 1cm)
h. In vitro hardening. (Bar = 2 cm)
i. Plantlet transferred to pot containing vermiculite cori peat (1:1). (Bar = 2 cm)
ACKNOWLEDGEMENTS

The financial support by University Grants Commission (UGC), New Delhi is gratefully acknowledged.

Literature Cited


Mandal, J., Pattnaik, S. and Chand, P.K. 2000. Alginate encapsulation of axillary buds of *Ocimum americanum* L. (Hoary basil), *O. basilicum* (sweet basil), *O. gratissium* (shrubby basil) and


